Module Introduction to Segment Tree and Binary Indexed Tree

Introduction to Segment Tree and Binary Indexed Tree

**Frequency: 10/10** Segment trees and binary indexed trees (BIT) are indispensable data structures in competitive programming, enabling efficient range queries and updates over arrays. Generally speaking, Segment Tree is more versatile while BIT have a lower constant factor. Since BIT can be a bit tricky to understand at first, most people choose to start with Segment Tree. And you should choose Segment Tree too.

Resources

- [CP Algorithms: Segment Tree](https://cp-algorithms.com/data_structures/segment_tree.html) - [CP Algorithms: Fenwick Tree](https://cp-algorithms.com/data_structures/fenwick.html)

Problems

Point update, sum query 653 / 667 1400
Point update, minimum query 582 / 608 1400
Range update, sum query 542 / 576 1400
Range update, minimum query 499 / 514 1400
Apple picking 311 / 378 1500
Non-negative subarray 324 / 364 1500
Inversions 289 / 295 1500
K-query 321 / 337 1500
Divisible by 3 291 / 317 1500
Mushroom harvesting 176 / 188 1500
KSS 168 / 209 1500
D-query 254 / 278 1600
Greatest subarray sum 229 / 245 1600
Copying data 154 / 161 1600
Within 1 153 / 177 1600
Within 2 144 / 158 1600
Ladder update 158 / 174 1700
Racing 87 / 97 1700
One time 109 / 128 1800
Subarray XOR 109 / 116 1800
String sorting 103 / 137 1900
Odd query 34 / 56 2000
Full sequence 20 / 28 2000